

AI Snap! blocks for speech input and output, computer vision, word

embeddings, and neural net creation, training, and use

Ken Kahn, University of Oxford, toontalk@gmail.com

Naveen Naveen, AI World School, naveen@robotixedu.com

Ramana Prasad, AI World School, rp@robotixedu.com

Gayathri Veera, AI World School, gayathriveera@merituseducation.com

Abstract

We will demonstrate blocks integrated into Snap! (Harvey,
B., & Mönig, J. 2010) (Snap 2021) capable of a wide range
of AI services, interactive AI programming guides, and a
selection from over thirty sample projects. These blocks have
been used by school students as young as 6 and by university
students in both school settings and informal learning
contexts. We are aware of sessions and workshops that have
been held in many European, Asian, and North American
countries.

The Snap! AI library includes blocks for speech synthesis and
recognition. These rely upon standard web services currently
provided by Chrome and Edge. Other blocks access computer
vision cloud services provided by Google and Microsoft.

Relying upon the open source TensorFlow.js library
(Smilkov et al 2019) are blocks that load and use pre-trained
neural network models. These blocks perform image
classification, object detection and segmentation, pose
detection, style transfer, sentence and image encoding, and
sound recognition. Other blocks rely upon TensorFlow.js to
support neural network creation, training, prediction, and
hyper-parameter optimization. These blocks run on the user’s
devices thereby avoiding application installation, latency
from network access, and possible privacy violations from
data being sent to servers. Finally, Snap! blocks relying upon
TensorFlow.js can be run offline, enabling their use in parts
of the world lacking reliable Internet connections.

There are blocks that support word embeddings by reporting
the embeddings, finding nearest words, and mapping words
to two-dimensional locations. They support 20,000 words
and 15 languages.

In addition to the library of Snap! blocks we will demonstrate
the AI programming guide that contains a large number of
interactive elements designed to enable students to explore
the Snap! blocks in the context in which they are presented.

Our demonstration will include a range of sample projects
that illustrate the use of the AI blocks library. These projects
were designed to be relatively easy for students to modify and
enhance.

An introduction to a wide sample of the Snap!

AI blocks

A general principal followed in the design of the Snap! AI
blocks is to provide at least two versions for each
functionality. One version is as simple as possible while the
other provides a large variety of options and advanced
functionality. For example, two of the blocks for speech
synthesis follow. (Note that it is up to the browser’s
implementation of each synthesis voice how, as below, a
French voice is given English text. In Chrome it speaks the
English with a French accident and speaks numbers in
French.)

Figure 1 – Two blocks for speech synthesis

Determining good defaults for the simple blocks is
challenging. Should the simple speak block begin speaking
and then immediately proceed to the next command or
proceed only when finished speaking? We chose to have it
not wait without much knowledge of how most users will use
it. The situation is made more difficult by the fact that
changing the default later would likely lead to confusion and
compatibility problems. And this burden would fall on the
novice users who is yet to master the expert version of the
command.

A different sort of challenge arose with the block that reports
a voice that can be used in the advanced speech synthesis
block.

Figure 2 – a block to find the desired voice

mailto:naveen@robotixedu.com

Each browser has a different list of available voices. And the
list can differ in different locales. The “voice that matches”
block searches through the available voices for one that best
matches the keywords. The block in Figure 2 reports a female
English speaking voice with a British accent in Chrome (at
least in some parts of the world) but in other browsers may
report a male US English voice if nothing closer is available.

Full-featured speech synthesis and recognition blocks
support an optional language specification. The default
language is the default language of the browser being used.
A block can set it to another value. Effort was taken to enable
users to specify the language in English, in the language
specified, or as a IEFT language tag (e.g., fr-FR for French
as spoken in France).

Speech recognition blocks are also available in simple and
full-featured forms. The simplest block waits until the
browser reports what was just spoken (or an error message if
nothing was spoken or the microphone was not accessible).

Figure 3 - A block that reports the next result

from the speech recognizer

A more advanced user is more likely to find the following
block more useful. It will listen in the background and when
the speech is recognized a user-supplied script is run.

Figure 4 - This block will run the first script with

text of the recognized speech or the second script

with an error message

For very advanced usage of speech recognition access to
alternative interpretations of the speech and the confidence
scores of each can be achieved with this block.

Figure 5 – full featured speech recognition block

We developed a set of blocks to access AI cloud services for
image recognition and the like. These blocks report a detailed
analysis of an image describing categories, objects, bodies,
and much more. We provide blocks for accessing any part of
the analysis as well as blocks for convenience to access
commonly used features such as labels. The blocks can
access services from Google, Microsoft, and originally also
IBM (but they changed their API making this infeasible). A
significant awkwardness using these services is that one
needs to register to obtain an API key. Free quotas are
generous but do limit the number of queries one can make per
time period. Students need to be careful to not reveal their

API keys to others. These blocks were rarely used by
students.

Fortunately, subsequent to the development of those blocks,
TensorFlow.js pre-trained models for image recognition,
object detection, body segmentation, and pose detection
became available. There are blocks that provide easy-to-use
access to each of these functionalities. They can work either
with the user’s device’s camera or with stored images. While
not as accurate or elaborate as the analysis provided by AI
cloud services, they work very quickly without sending any
data off the device.

Inspired by the first version of Teachable Machine (Google
2021), we developed blocks that enables one to train a model
to classify images into user-defined categories. Subsequently,
version 2 of Teachable Machine was released that enabled us
to provide blocks that can use inside Snap! a model trained in
Teachable Machine to categorize images or sounds.
Teachable Machine has a very well-engineered user interface
and training functionality that is better than what the Snap!
blocks can provide. However, the Snap! blocks can be used
in applications where a model is trained, used, and then more
training and use follows.

Figure 6 – A block for getting predictions from a

model trained in Teachable Machine

Included in the Snap! AI block library are blocks for doing
natural language processing. These include blocks that
support word embeddings in 15 languages, English sentence
embeddings, and question answering from a passage. An
example of using these blocks is solving word analogy
problems such as “man is to father as woman is to X”.

Figure 7 – using simple version of word

embedding blocks to solve a word analogy

problem

The final set of Snap! AI blocks support the creation, training,
and use of deep neural networks. Once again the simple and
full-featured versions are provided. A model can be created
with either of the following blocks.

Figure 8 – a simple block for creating a deep

neural network

Figure 9 – the full-featured block for creating

neural networks

Interactive elements in the programming

guide

A tutorial guide to all the Snap! AI blocks is provided as a
web site. The tutorial material is interleaved with discussions
of societal impact, history, background material, project
suggestions, and more. Each section of the guide contains
several frames that provide a means to interact with the Snap!
blocks discussed directly without leaving the page and its
guidance.

A sample of AI Snap! projects

We have developed thirty sample artificial intelligence
programs in a form suitable for enhancement by non-expert
programmers. The projects are implemented using the Snap!
AI blocks. These projects have been designed to be
modifiable by school students and have been iteratively
developed with over 100 students. The projects involve
speech synthesis, speech and image recognition, natural
language processing, and deep machine learning. They
illustrate a variety of AI capabilities, concepts, and
techniques. The intent is to provide students with hands-on
experience with AI programming so they come to understand
the possibilities, problems, strengths, and weaknesses of AI
today. (Kahn & Winters 2021b)

Student experiences using the Snap! AI blocks

and associated resources

The Snap! AI blocks have been used by school students as
young as 6 and by university students in both school settings
and informal learning contexts. We are aware of sessions and
workshops that have been held in many European, Asian, and
North American countries. Publications describe some of
these efforts in Indonesia (Kahn et al 2018) and China (Kahn
et al 2020).

Here we describe previously unpublished descriptions of
some student experiences in India.

We carried out a pilot program with AI Education courses
curated for K-12 children. Scratch for AI blocks and Snap!
for AI blocks were recently introduced to students in India to
help them deduce and understand various AI functions by
creating programs which gave them access to real time AI
services. The curriculum and course for the pilot program
were created under the guidelines as outlined by the Artificial

Intelligence (AI) for K-12 [AI4K12] initiative
(https://ai4k12.org/).

In the first phase of the program, since children in India are
familiar with the Scratch programming platform (MIT Media
Lab), we introduced Scratch for AI to children between the
ages 8 to 13. With Scratch for AI, children could explore 12
different types of functions to AI services which include
Computer Vision, Web access and retrieval, Speech
Synthesis, Language Recognition, Machine Learning etc.
Children could understand a complex topic like Machine
Learning to train the computer to identify different objects
and even go on to create a complex program using the
Posenet function.

In the second phase of the program, in order to introduce the
children to higher level programming, like first class lists and
first class procedures, and to advanced AI functionalities
Snap! for AI blocks programming was a logical choice
especially for those in their teenage years. Children between
the ages 14 to 18 were taught how to create programs with AI
functionalities using the Snap! for AI blocks. One example of
a program found popular by the children was where they used
computer vision to help detect whether the user is wearing a
mask or not, attributing it to a real world situation. Another
program that was quite popular with the children was where
neural-style transfer effects were added to images.

From our initial observations of the children’s experiences
creating their own programs with the Scratch for AI and
Snap! for AI blocks, we found that the children were able to
learn and explore AI in fun ways, and they also assumed
greater responsibility and autonomy for their interest in
learning about AI.

Conclusions

We continue to develop Snap! blocks and resources to
provide beginner-friendly access to AI functionalities. We
hope to give learners and hobbyists the ability to creatively
use AI in their projects thereby acquiring a first-hand
understanding of some elements of a technology that is
rapidly changing our world.

References

eCraft2Learn 2021. A guide to AI extensions to Snap!.
https://ecraft2learn.github.io/ai/ Accessed: 07-09-2021.

Google 2021. Teachable Machine.
https://teachablemachine.withgoogle.com/ Accessed: 2021-09-07.

Harvey, B., & Mönig, J., 2010. Bringing “No Ceiling” to Scratch:
Can One Language Serve Kids and Computer Scientists? In
Proceedings: Constructionism, Paris, France.

Kahn, K.M. and Winters, N., 2018. AI programming by children.
In Proceedings: Constructionism, Vilnius, Lithuania.

Kahn, K.M., Megasari, R., Piantari, E. and Junaeti, E., 2018. AI
programming by children using snap! block programming in a
developing country. Proceedings: EC-TEL. Leeds, UK.

Kahn, K., Lu, Y., Zhang, J., Winters, N. and Gao, M., 2020. Deep
learning programming by all. Proceedings: Constructionism,
Dublin, Ireland.

Kahn, K.M. and Winters, N., 2021a. Constructionism and AI: A
history and possible futures. British Journal of Educational
Technology.

Kahn, K. and Winters, N., 2021b. Learning by Enhancing Half-
Baked AI Projects. KI-Künstliche Intelligenz, pp.1-5.

https://ai4k12.org/
https://ecraft2learn.github.io/ai/
https://teachablemachine.withgoogle.com/

Smilkov, D., Thorat, N., Assogba, Y., Yuan, A., Kreeger, N., Yu,
P., Zhang, K., Cai, S., Nielsen, E., Soergel, D. and Bileschi, S.,
2019. Tensorflow. js: Machine learning for the web and beyond.
arXiv:1901.05350.

Snap 2021. Snap! Build your own blocks.
https://snap.berkeley.edu/ Accessed: 2021-08-23.

https://snap.berkeley.edu/

